Displaying 881 – 900 of 1395

Showing per page

Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels

E. H. Youssfi (2002)

Studia Mathematica

We consider a large class of convex circular domains in M m , n ( ) × . . . × M m d , n d ( ) which contains the oval domains and minimal balls. We compute their Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.

Proper holomorphic mappings vs. peak points and Shilov boundary

Łukasz Kosiński, Włodzimierz Zwonek (2013)

Annales Polonici Mathematici

We present a result on the existence of some kind of peak functions for ℂ-convex domains and for the symmetrized polydisc. Then we apply the latter result to show the equivariance of the set of peak points for A(D) under proper holomorphic mappings. Additionally, we present a description of the set of peak points in the class of bounded pseudoconvex Reinhardt domains.

Puiseux Expansion of a Cuspidal Singularity

Maciej Borodzik (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We present an effective and elementary method of determining the topological type of a cuspidal plane curve singularity with given local parametrization.

Currently displaying 881 – 900 of 1395