Displaying 1041 – 1060 of 1395

Showing per page

Sur une extension du problème de Gleason dans les domaines pseudoconvexes

Joaquin M. Ortega (1984)

Annales de l'institut Fourier

Dans cet article on montre que toute f A ( D ) a une décomposition f ( z ) - f ( w ) = i = 1 n g i ( z , w ) ( z i - w i ) avec g i A ( D × D ) pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.

Systems of convolution equations and LAU-spaces

Daniele C. Struppa (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.

Tameness in Fréchet spaces of analytic functions

Aydın Aytuna (2016)

Studia Mathematica

A Fréchet space with a sequence | | · | | k k = 1 of generating seminorms is called tame if there exists an increasing function σ: ℕ → ℕ such that for every continuous linear operator T from into itself, there exist N₀ and C > 0 such that | | T ( x ) | | C | | x | | σ ( n ) ∀x ∈ , n ≥ N₀. This property does not depend upon the choice of the fundamental system of seminorms for and is a property of the Fréchet space . In this paper we investigate tameness in the Fréchet spaces (M) of analytic functions on Stein manifolds M equipped with the compact-open...

Tautness of locally taut domains in complex spaces

Do Duc Thai, Pham Nguyen Thu Trang (2004)

Annales Polonici Mathematici

A necessary and sufficient condition for tautness of locally taut domains in a weakly Brody hyperbolic complex space is given. Moreover, some results of Kobayashi and Gaussier are deduced as corollaries.

The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials

Tomasz Beberok (2017)

Czechoslovak Mathematical Journal

We investigate the Bergman kernel function for the intersection of two complex ellipsoids { ( z , w 1 , w 2 ) n + 2 : | z 1 | 2 + + | z n | 2 + | w 1 | q < 1 , | z 1 | 2 + + | z n | 2 + | w 2 | r < 1 } . We also compute the kernel function for { ( z 1 , w 1 , w 2 ) 3 : | z 1 | 2 / n + | w 1 | q < 1 , | z 1 | 2 / n + | w 2 | r < 1 } and show deflation type identity between these two domains. Moreover in the case that q = r = 2 we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.

The Bergman kernel functions of certain unbounded domains

Friedrich Haslinger (1998)

Annales Polonici Mathematici

We compute the Bergman kernel functions of the unbounded domains Ω p = ( z ' , z ) ² : z > p ( z ' ) , where p ( z ' ) = | z ' | α / α . It is also shown that these kernel functions have no zeros in Ω p . We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.

Currently displaying 1041 – 1060 of 1395