Regularity for elliptic pairs over
We describe the slopes, with respect to the coordinates hyperplanes, of the hypergeometric systems of codimension one, that is when the toric ideal is generated by one element.
In this paper we introduce the sheaf of stratified Whitney jets of Gevrey order on the subanalytic site relative to a real analytic manifold . Then, we define stratified ultradistributions of Beurling and Roumieu type on . In the end, by means of stratified ultradistributions, we define tempered-stratified ultradistributions and we prove two results. First, if is a real surface, the tempered-stratified ultradistributions define a sheaf on the subanalytic site relative to . Second, the tempered-stratified...
Let be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of -modules on induces a fully faithful functor on a subcategory of germs of formal holonomic -modules. Further, given a germ of holonomic -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .
We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.
This is a summary of recent work where we introduced a class of D-modules adapted to study ideals generated by exponential polynomials.