Displaying 401 – 420 of 747

Showing per page

Multidimensional residues and ideal membership.

Alessandro Perotti (1998)

Publicacions Matemàtiques

Let I(f) be a zero-dimensional ideal in C[z1, ..., zn] defined by a mapping f. We compute the logarithmic residue of a polynomial g with respect to f. We adapt an idea introduced by Aizenberg to reduce the computation to a special case by means of a limiting process.We then consider the total sum of local residues of g w.r.t. f. If the zeroes of f are simple, this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f. Some applications...

Noethérianité de certaines algèbres de fonctions analytiques et applications

Abdelhafed Elkhadiri, Mouttaki Hlal (2000)

Annales Polonici Mathematici

Let M n be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider S K = f H ( M ) | f ( x ) 0 f o r a l l x K ; S K is a multiplicative subset of H ( M ) . Let S K - 1 H ( M ) be the localization of H(M) with respect to S K . In this paper we prove, first, that S K - 1 H ( M ) is a regular ring (hence noetherian) and use this result in two situations:    1) For each open subset Ω n , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, f x , is algebraic...

Currently displaying 401 – 420 of 747