Displaying 61 – 80 of 132

Showing per page

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...

Interpolation d'opérateurs entre espaces de fonctions holomorphes

Patrice Lassere (1991)

Annales Polonici Mathematici

Let K be a compact subset of an hyperconvex open set D n , forming with D a Runge pair and such that the extremal p.s.h. function ω(·,K,D) is continuous. Let H(D) and H(K) be the spaces of holomorphic functions respectively on D and K equipped with their usual topologies. The main result of this paper contains as a particular case the following statement: if T is a continuous linear map of H(K) into H(K) whose restriction to H(D) is continuous into H(D), then the restriction of T to H ( D α ) is a continuous...

Interpolation sur des perturbations d’ensembles produits

Damien Roy (2002)

Bulletin de la Société Mathématique de France

On démontre un résultat concernant l’interpolation de fonctions analytiques sur une perturbation d’ensemble produit qui, dans le cas p -adique, répond à une conjecture de P.Robba et, dans le cas complexe, complète des résultats antérieurs de E.Bombieri, S.Lang, D.Masser, J.-C.Moreau et M.Waldschmidt.

Maximum modulus sets

Thomas Duchamp, Edgar Lee Stout (1981)

Annales de l'institut Fourier

We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain D of dimension N . If Σ b D is a smooth manifold of dimension N and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in A 2 ( D ) with the same smooth N -dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in H 1 ( D , R ) vanishes or if D C N is polynomially...

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods

W. Pleśniak (2006)

Banach Center Publications

We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions for pieces...

Oka manifolds: From Oka to Stein and back

Franc Forstnerič (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...

On q -Runge pairs

Mihnea Colţoiu (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a 4 -complete open subset D 6 (which is an analytic complement in the unit ball) such that the restriction map H 3 ( 6 , ) H 3 ( D , ) has a dense image for every C o h ( 6 ) but the pair ( D , 6 ) is not a 4 -Runge pair.

On the Bernstein-Walsh-Siciak theorem

Rafał Pierzchała (2012)

Studia Mathematica

By the Oka-Weil theorem, each holomorphic function f in a neighbourhood of a compact polynomially convex set K N can be approximated uniformly on K by complex polynomials. The famous Bernstein-Walsh-Siciak theorem specifies the Oka-Weil result: it states that the distance (in the supremum norm on K) of f to the space of complex polynomials of degree at most n tends to zero not slower than the sequence M(f)ρ(f)ⁿ for some M(f) > 0 and ρ(f) ∈ (0,1). The aim of this note is to deduce the uniform version,...

On the multivariate transfinite diameter

Thomas Bloom, Jean-Paul Calvi (1999)

Annales Polonici Mathematici

We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.

Currently displaying 61 – 80 of 132