Displaying 341 – 360 of 442

Showing per page

Spaces of geometrically generic configurations

Yoel Feler (2008)

Journal of the European Mathematical Society

Let X denote either ℂℙ m or m . We study certain analytic properties of the space n ( X , g p ) of ordered geometrically generic n -point configurations in X . This space consists of all q = ( q 1 , , q n ) X n such that no m + 1 of the points q 1 , , q n belong to a hyperplane in X . In particular, we show that for a big enough n any holomorphic map f : n ( ℂℙ m , g p ) n ( ℂℙ m , g p ) commuting with the natural action of the symmetric group 𝐒 ( n ) in n ( ℂℙ m , g p ) is of the form f ( q ) = τ ( q ) q = ( τ ( q ) q 1 , , τ ( q ) q n ) , q n ( ℂℙ m , g p ) , where τ : n ( ℂℙ m , g p ) 𝐏𝐒𝐋 ( m + 1 , ) is an 𝐒 ( n ) -invariant holomorphic map. A similar result holds true for mappings of the configuration space n ( m , g p ) .

Spherical gradient manifolds

Christian Miebach, Henrik Stötzel (2010)

Annales de l’institut Fourier

We study the action of a real-reductive group G = K exp ( 𝔭 ) on a real-analytic submanifold X of a Kähler manifold. We suppose that the action of G extends holomorphically to an action of the complexified group G on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map μ 𝔭 : X 𝔭 . We show that μ 𝔭 almost separates the K –orbits if and only if a minimal parabolic subgroup of G has an open orbit. This generalizes Brion’s characterization of spherical...

Spherical Stein manifolds and the Weyl involution

Dmitri Akhiezer (2009)

Annales de l’institut Fourier

We consider an action of a connected compact Lie group on a Stein manifold by holomorphic transformations. We prove that the manifold is spherical if and only if there exists an antiholomorphic involution preserving each orbit. Moreover, for a spherical Stein manifold, we construct an antiholomorphic involution, which is equivariant with respect to the Weyl involution of the acting group, and show that this involution stabilizes each orbit. The construction uses some properties of spherical subgroups...

Stratonovich-Weyl correspondence for discrete series representations

Benjamin Cahen (2011)

Archivum Mathematicum

Let M = G / K be a Hermitian symmetric space of the noncompact type and let π be a discrete series representation of G holomorphically induced from a unitary character of K . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple ( G , π , M ) by a suitable modification of the Berezin calculus on M . We extend the corresponding Berezin transform to a class of functions on M which contains the Berezin symbol of d π ( X ) for X in the Lie algebra 𝔤 of G . This allows...

Structure of leaves and the complex Kupka-Smale property

Tanya Firsova (2013)

Annales de l’institut Fourier

We study topology of leaves of 1 -dimensional singular holomorphic foliations of Stein manifolds. We prove that for a generic foliation all leaves, except for at most countably many, are contractible, the rest are topological cylinders. We show that a generic foliation is complex Kupka-Smale.

Sur la dynamique arithmétique des automorphismes de l’espace affine

Sandra Marcello (2003)

Bulletin de la Société Mathématique de France

Nous étudions les propriétés arithmétiques des itérés de certains automorphismes polynomiaux affines. Nous traitons des questions concernant les points périodiques et non-périodiques, en particulier nous comptons les points rationnels dans les orbites des points non-périodiques. Nous traitons le cas des automorphismes réguliers et triangulaires. Nous achevons de répondre aux questions en dimension 2 et montrons que la situation est nettement plus compliquée en dimension supérieure.

Currently displaying 341 – 360 of 442