Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif
Soit un groupe analytique compact : son complexifié universel est un groupe analytique complexe réductif. On introduit dans une classe de “domaines de Reinhardt généralisés”, bi-invariants par et caractérisés par une “base”, définie dans une sous-algèbre abélienne maximale de l’algèbre de Lie du groupe et invariante par le groupe de Weyl.On donne une caractérisation par leurs coefficients de Fourier-Laurent des fonctions holomorphes dans un tel domaine. On montre que l’enveloppe d’holomorphie...