Displaying 421 – 440 of 442

Showing per page

Vector fields from locally invertible polynomial maps in ℂⁿ

Alvaro Bustinduy, Luis Giraldo, Jesús Muciño-Raymundo (2015)

Colloquium Mathematicae

Let (F₁,..., Fₙ): ℂⁿ → ℂⁿ be a locally invertible polynomial map. We consider the canonical pull-back vector fields under this map, denoted by ∂/∂F₁,...,∂/∂Fₙ. Our main result is the following: if n-1 of the vector fields / F j have complete holomorphic flows along the typical fibers of the submersion ( F , . . . , F j - 1 , F j + 1 , . . . , F ) , then the inverse map exists. Several equivalent versions of this main hypothesis are given.

Vector fields, invariant varieties and linear systems

Jorge Vitório Pereira (2001)

Annales de l’institut Fourier

We investigate the interplay between invariant varieties of vector fields and the inflection locus of linear systems with respect to the vector field. Among the consequences of such investigation we obtain a computational criterion for the existence of rational first integrals of a given degree, bounds for the number of first integrals on families of vector fields, and a generalization of Darboux's criteria. We also provide a new proof of Gomez--Mont's result on foliations...

Weyl calculus for complex and real symmetric domains

Jonathan Arazy, Harald Upmeier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We define the Weyl functional calculus for real and complex symmetric domains, and compute the associated Weyl transform in the rank 1 case.

Weyl quantization for the semidirect product of a compact Lie group and a vector space

Benjamin Cahen (2009)

Commentationes Mathematicae Universitatis Carolinae

Let G be the semidirect product V K where K is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space V . Let 𝒪 be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation π of G . We consider the case when the corresponding little group H is the centralizer of a torus of K . By dequantizing a suitable realization of π on a Hilbert space of functions on n where n = dim ( K / H ) , we construct a symplectomorphism between...

When does a Bounded Domain Cover a Projective Manifold? (Survey)

Kasparian, Azniv (1997)

Serdica Mathematical Journal

* The research has been partially supported by Bulgarian Funding Organizations, sponsoring the Algebra Section of the Mathematics Institute, Bulgarian Academy of Sciences, a Contract between the Humboldt Univestit¨at and the University of Sofia, and Grant MM 412 / 94 from the Bulgarian Board of Education and TechnologyThe present survey introduces in some classical properties of the universal coverings of the projective algebraic manifolds. All the results are non-original. A forthcoming note is...

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Currently displaying 421 – 440 of 442