Geometry of biinvariant subsets of complex semisimple Lie groups
Let be a quasi-Hermitian Lie group with Lie algebra and be a compactly embedded subgroup of . Let be a regular element of which is fixed by . We give an explicit -equivariant diffeomorphism from a complex domain onto the coadjoint orbit of . This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where is associated with a unitary irreducible representation of which is holomorphically...
Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe .
We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....
We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.
Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball in a J*-algebra of operators. Let be the family of all collectively compact subsets W contained in . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when is a Cartan factor.
In questo articolo si determina il gruppo di tutti gli automorfismi olomorfi del dominio tubolare sul cono di Vinberg. Tale dominio ha dimensione complessa 5 ed è il dominio tubolare omogeneo non simmetrico di dimensione più bassa. Si costruisce esplicitamente un gruppo transitivo di automorfismi olomorfi del dominio; successivamente, dimostrando che tale gruppo contiene l'intero sottogruppo di isotropia di un qualunque punto, si ottiene che esso coincide col gruppo di tutti gli automorfismi olomorfi...