The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
We discuss an example of an open subset of a torus which admits a dense entire curve, but no dense Brody curve.
We construct closed complex submanifolds of which are differential but not
holomorphic complete intersections. We also prove a homotopy principle concerning the
removal of intersections with certain complex subvarieties of .
A complex analytic space is said to have the D*-extension property if and only if any holomorphic map from the punctured disk to the given space extends to a holomorphic map from the whole disk to the same space. A Hartogs domain H over the base X (a complex space) is a subset of X x C where all the fibers over X are disks centered at the origin, possibly of infinite radius. Denote by φ the function giving the logarithm of the reciprocal of the radius of the fibers, so that, when X is pseudoconvex,...
In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
Let and be domains in and an isometry for the Kobayashi or Carathéodory metrics. Suppose that extends as a map to . We then prove that is a CR or anti-CR diffeomorphism. It follows that and must be biholomorphic or anti-biholomorphic.
This article considers C¹-smooth isometries of the Kobayashi and Carathéodory metrics on domains in ℂⁿ and the extent to which they behave like holomorphic mappings. First we provide an example which suggests that 𝔹ⁿ cannot be mapped isometrically onto a product domain. In addition, we prove several results on continuous extension of C⁰-isometries f : D₁ → D₂ to the closures under purely local assumptions on the boundaries. As an application, we show that there is no C⁰-isometry between a strongly...
We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.
In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.
We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
If is a Hodge manifold and we construct a canonical sequence of functions such that in the topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when is regarded as a real algebraic variety. The definition of is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.
In contrast with the integrable case there exist infinitely many non-integrable homogeneous almost complex manifolds which are strongly pseudoconvex at each boundary point. All such manifolds are equivalent to the Siegel half space endowed with some linear almost complex structure.We prove that there is no relatively compact strongly pseudoconvex representation of these manifolds. Finally we study the upper semi-continuity of the automorphism group of some hyperbolic strongly pseudoconvex almost...
Currently displaying 1 –
20 of
43