Fano hypersurfaces in weighted projective 4-spaces.
We give a description of Kähler manifolds equipped with an integrable subbundle of of rank () under the assumption that the line bundle is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.
On généralise dans cet article la notion de filtration de Harder-Narasimhan au cas des fibrés complexes sur une variété presque complexe compacte d'une part, et au cas des faisceaux cohérents sans torsion sur une variété holomorphe d'autre part. On démontre, dans les deux cas, l'existence d'un déstabilisant maximal. On obtient un théorème de convergence en famille et par là-même l'ouverture de la stabilité en déformation.
Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of in , for some ) or differentiable (parametrized by an open neighborhood of in , for some ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point of the parameter space, the fiber over of the first family is biholomorphic to the fiber over of the second family. Then, under which conditions are the...
Let be a smooth foliation with complex leaves and let be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space . In particular we concentrate on the following two themes: function theory for the algebra and cohomology with values in .
Si illustrano alcuni sviluppi della teoria delle foliazioni di Monge-Ampère e delle sue applicazioni alla classificazione delle varietà complesse non compatte.