Ein Approximationssatz für holomorphe Funktionen auf nicht-kompakte Riemannschen Flächen.
Let be a complex one-dimensional torus. We prove that all subsets of with finitely many boundary components (none of them being points) embed properly into . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.
Dans cet article nous faisons l’étude algébrique des jets de Demailly-Semple en dimension 3 en utilisant la théorie des invariants des groupes non réductifs. Cette étude fournit la caractérisation géométrique du fibré des jets d’ordre 3 sur une variété de dimension 3 et permet d’effectuer, par Riemann-Roch, un calcul de caractéristique d’Euler.
We study the extension problem for germs of holomorphic isometries up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics on and on . Our main focus is on boundary extension for pairs of bounded domains such that the Bergman kernel extends meromorphically in to a neighborhood of , and such that the analogous statement holds true for the Bergman kernel on . Assuming that and are complete Kähler manifolds, we prove that the germ...
Holomorphic bundles, with fiber , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.
New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.
We provide a new proof of a result of X.X. Chen and G.Tian [5]: for a polarized extremal Kähler manifold, the minimum of the modified K-energy is attained at an extremal metric. The proof uses an idea of C. Li [16] adapted to the extremal metrics using some weighted balanced metrics.