An example concerning a question of Zariski
We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.
Some relations between normal complex surface singularities and symplectic fillings of the links of the singularities are discussed. For a certain class of singularities of general type, which are called hypersurface K3 singularities in this paper, an inequality for numerical invariants of any minimal symplectic fillings of the links of the singularities is derived. This inequality can be regarded as a symplectic/contact analog of the 11/8-conjecture in 4-dimensional topology.
Soient un espace analytique complexe réduit de dimension pure et un sous-espace lisse de de dimension pure tel que dimension dimension .L’ensemble des points de en lesquels les conditions de Whitney strictes ne sont pas satisfaites par est un sous-espace analytique propre de .
Nous montrons ici un théorème d’approximation diophantienne entre le corps des séries formelles en plusieurs variables et son complété pour la topologie de Krull.
We show that if the degree of a nonsingular projective variety is high enough, maximization of any of the most important numerical invariants, such as class, Betti number, and any of the Chern or middle Hodge numbers, leads to the same class of extremal varieties. Moreover, asymptotically (say, for varieties whose total Betti number is big enough) the ratio of any two of these invariants tends to a well-defined constant.