Page 1 Next

Displaying 1 – 20 of 60

Showing per page

A class of non-rational surface singularities with bijective Nash map

Camille Plénat, Patrick Popescu-Pampu (2006)

Bulletin de la Société Mathématique de France

Let ( 𝒮 , 0 ) be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor E and its irreducible components E i , i I . The Nash map associates to each irreducible component C k of the space of arcs through 0 on 𝒮 the unique component of E cut by the strict transform of the generic arc in C k . Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if E · E i < 0 for any  i I .

A combinatorial approach to singularities of normal surfaces

Sandro Manfredini (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we study generic coverings of 2 branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is { x n = y m } (with n m ) and the degree of the cover is equal to n or n - 1 .

A KAM phenomenon for singular holomorphic vector fields

Laurent Stolovitch (2005)

Publications Mathématiques de l'IHÉS

Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection...

A new proof of desingularization over fields of characteristic zero.

Santiago Encinas, Orlando Villamayor (2003)

Revista Matemática Iberoamericana

We present a proof of embedded desingularization for closed subschemes which does not make use of Hilbert-Samuel function and avoids Hironaka's notion of normal flatness (see also [171 page 224). Given a subscheme defined by equations, we prove that embedded desingularization can be achieved by a sequence of monoidal transformations; where the law of transformation on the equations defining the subscheme is simpler then that used in Hironaka 's procedure. This is done by showing that desingularization...

A note on M. Soares’ bounds

Eduardo Esteves, Israel Vainsencher (2006)

Annales de l’institut Fourier

We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of ℂℙ n .

A note on singularities at infinity of complex polynomials

Adam Parusiński (1997)

Banach Center Publications

Let f be a complex polynomial. We relate the behaviour of f “at infinity” to the sheaf of vanishing cycles of the family f ¯ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange’s Condition, (ii) implies the C -triviality of f. If the support of sheaf of vanishing cycles of f ¯ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in...

Currently displaying 1 – 20 of 60

Page 1 Next