Faisceaux pervers dont le support singulier est une courbe plane
On every reduced complex space we construct a family of complexes of soft sheaves ; each of them is a resolution of the constant sheaf and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.
Following the study of the arc structure of singularities, initiated by J. Nash, we give criteria for the existence of smooth curves on a surface singularity (S,O) and of smooth branches of its generic hypersurface section. The main applications are the following: the existence of a natural partition of the set of smooth curves on (S,O) into families, a description of each of them by means of chains of infinitely near points and their associated maximal cycle and the existence of smooth curves on...
En résumé, on retiendra que seules les surfaces d’Inoue-Hirzebruch et les surfaces génériques admettent un feuilletage holomorphe. Sur les surfaces d’Inoue-Hirzebruch il existe exactement deux feuilletages et sur les surfaces génériques au plus un. Le lieu singulier de la réunion des courbes rationnelles coïncide avec le lieu singulier du feuilletage. Les courbes rationnelles sont des feuilles en dehors des points singuliers du feuilletage.
Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce -groupoïde de Lie un invariant biméromorphe : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...
Nous donnons des conditions nécessaires et suffisantes pour qu’une variété de dimension 3 se réalise comme bord d’une famille dégénérée de courbes complexes, et pour qu’un entrelacs dans une 3-variété se réalise comme bord d’un germe de fonction analytique en un point d’une surface complexe normale. Ces résultats s’appuient sur une étude des objets topologiques fournis par de telles fonctions holomorphes : soit une variété de Waldhausen et soit une union finie, éventuellement vide, de fibres...
Soit un corps de caractéristique nulle, un polynôme de Laurent en variables, à coefficients dans et non dégénéré pour son polyèdre de Newton à l’infini. Soit fonctions non constantes à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée en termes du polyèdre de Newton à l’infini de . Pour égal à la somme nous obtenons une formule...
For germs of singularities of holomorphic foliations in which are regular after one blowing-up we show that there exists a functional analytic invariant (the transverse structure to the exceptional divisor) and a finite number of numerical parameters that allow us to decide whether two such singularities are analytically equivalent. As a result we prove a formal-analytic rigidity theorem for this kind of singularities.
We consider a contractible closure of the space of Legendrian knots in the standard contact 3-space. We show that in this context the space of finite-type complex-valued invariants of Legendrian knots is isomorphic to that of framed knots in with an extra order 1 generator (Maslov index) added.