Identifying variable points on a smooth curve.
Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée , satisfaisant des hypothèses génériques, de courbe de séparatrice . Nous démontrons l’existence d’un voisinage ouvert de dans tel que, pour toute feuille de , l’inclusion naturelle induit un monomorphisme au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....
A formula of Matsuo Oka (1990) expresses the Milnor number of a germ of a complex analytic map with a generic principal part in terms of the Newton polyhedra of the components of the map. In this paper this formula is generalized to the case of the index of a 1-form on a local complete intersection singularity (Theorem 1.10, Corollaries 1.11, 4.1). In particular, the Newton polyhedron of a 1-form is defined (Definition 1.6). This also simplifies the Oka formula in some particular cases (Propositions...
We study the normalization of analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. We then prove that there are smoothly linearizable parabolic analytic transformations which cannot be embedded into the flows of any analytic vector fields with a nilpotent linear part.
Let be two regular functions from the smooth affine complex variety to the affine line. The associated exponential Gauß-Manin systems on the affine line are defined to be the cohomology sheaves of the direct image of the exponential differential system with respect to . We prove that its holomorphic solutions admit representations in terms of period integrals over topological chains with possibly closed support and with rapid decay condition.