Displaying 281 – 300 of 338

Showing per page

The gradient lemma

Urban Cegrell (2007)

Annales Polonici Mathematici

We show that if a decreasing sequence of subharmonic functions converges to a function in W l o c 1 , 2 then the convergence is in W l o c 1 , 2 .

The image of a finely holomorphic map is pluripolar

Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)

Annales Polonici Mathematici

We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.

The pluricomplex Green function on some regular pseudoconvex domains

Gregor Herbort (2014)

Annales Polonici Mathematici

Let D be a smooth bounded pseudoconvex domain in ℂⁿ of finite type. We prove an estimate on the pluricomplex Green function D ( z , w ) of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.

The restriction theorem for fully nonlinear subequations

F. Reese Harvey, H. Blaine Lawson (2014)

Annales de l’institut Fourier

Let X be a submanifold of a manifold Z . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z , restrict to be viscosity subsolutions of the restricted subequation on X ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...

The Siciak-Zahariuta extremal function as the envelope of disc functionals

Finnur Lárusson, Ragnar Sigurdsson (2005)

Annales Polonici Mathematici

We establish disc formulas for the Siciak-Zahariuta extremal function of an arbitrary open subset of complex affine space. This function is also known as the pluricomplex Green function with logarithmic growth or a logarithmic pole at infinity. We extend Lempert's formula for this function from the convex case to the connected case.

The supports of higher bifurcation currents

Romain Dujardin (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Let ( f λ ) λ Λ be a holomorphic family of rational mappings of degree d on 1 ( ) , with k marked critical points c 1 , ... , c k . To this data is associated a closed positive current T 1 T k of bidegree ( k , k ) on Λ , aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which c 1 , ... , c k eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of Supp ( T 1 T k ) .

The transfinite diameter of the real ball and simplex

T. Bloom, L. Bos, N. Levenberg (2012)

Annales Polonici Mathematici

We calculate the transfinite diameter for the real unit ball B d : = x d : | x | 1 and the real unit simplex T d : = x + d : j = 1 d x j 1 .

Topologies semi-vectorielles. Application à l'analyse complexe

Pierre Lelong (1975)

Annales de l'institut Fourier

On définit sur un espace vectoriel E une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe E elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...

Currently displaying 281 – 300 of 338