A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques.
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations.
The operator , , , is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types and , respectively.
In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.
We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.
A sufficient condition is given in order that a centre of a polynomial planar autonomous system be a global centre.
This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation We first present a survey and then obtain new sufficient conditions for the existence of at least one solution by using Mawhin’s continuation theorem. Examples are presented to illustrate the main results.