An existence theorem for solutions of -th order nonlinear differential equations in the complex domain
In this note we consider the boundary value problem
In 1988 Anosov [1] published the construction of an example of a flow (continuous real action) on a cylinder or annulus with a phase portrait strikingly different from our normal experience. It contains orbits whose -limit sets contain a non-periodic orbit along with a simple closed curve of fixed points, but these orbits do not wrap down on this simple closed curve in the usual way. In this paper we modify some of Anosov’s methods to construct a flow on a surface of genus with equally striking...
The method of quasilinearization is a well–known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems.
We give a proof of the fact that any holomorphic Pfaffian form in two variables has a convergent integral curve. The proof gives an effective method to construct the solution, and we extend it to get a Gevrey type solution for a Gevrey form.
In this paper, an improvement of the global region for the non-existence of limit cycles of the Bogdanov-Takens system, which is well-known in the Bifurcation Theory, is given by two ideas. The first is to apply the existence of the algebraic invariant curve of the system to the Bendixson-Dulac criterion, and the second is to consider a necessary condition in order that a closed orbit of the system includes two equilibrium points. In virtue of these methods, it shall be shown that our previous result...