Sur l’équation du second ordre
On étudie les aspects locaux et globaux des actions holomorphes de SL2(C) sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL2(C) au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes des...
On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.