A review of the matrix Riccati equation
It was shown in [2] that a Langevin process can be reflected at an energy absorbing boundary. Here, we establish that the law of this reflecting process can be characterized as the unique weak solution to a certain second order stochastic differential equation with constraints, which is in sharp contrast with a deterministic analog.
We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems.
We consider the problem of the existence of positive solutions u to the problem , (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
We consider differential inclusions where a positive semidefinite function of the solutions satisfies a class- estimate in terms of time and a second positive semidefinite function of the initial condition. We show that a smooth converse Lyapunov function, i.e., one whose derivative along solutions can be used to establish the class- estimate, exists if and only if the class- estimate is robust, i.e., it holds for a larger, perturbed differential inclusion. It remains an open question whether...
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations.
In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.