On nonresonance impulsive functional differential equations with periodic boundary conditions.
In this paper a fixed point theorem for contraction multivalued maps due to Covitz and Nadler is used to investigate the existence of solutions for first and second order nonresonance impulsive functional differential inclusions in Banach spaces.
The author defines the numerical solution of a first order ordinary differential equation on a bounded interval in the way covering the general form of the so called one-step methods, proves convergence of the method (without the assumption of continuity of the righthad side) and gives a sufficient condition for the order of convergence to be .
We prove an existence and uniqueness theorem for row-finite initial value problems. The right-hand side of the differential equation is supposed to satisfy a one-sided matrix Lipschitz condition with a quasimonotone row-finite matrix which has an at most countable spectrum.
The paper deals with oscillation criteria of fourth order linear differential equations with quasi-derivatives.
The paper deals with the oscillation of a differential equation as well as with the structure of its fundamental system of solutions.