Displaying 21 – 40 of 42

Showing per page

Generalized trigonometric functions in complex domain

Petr Girg, Lukáš Kotrla (2015)

Mathematica Bohemica

We study extension of p -trigonometric functions sin p and cos p to complex domain. For p = 4 , 6 , 8 , , the function sin p satisfies the initial value problem which is equivalent to (*) - ( u ' ) p - 2 u ' ' - u p - 1 = 0 , u ( 0 ) = 0 , u ' ( 0 ) = 1 in . In our recent paper, Girg, Kotrla (2014), we showed that sin p ( x ) is a real analytic function for p = 4 , 6 , 8 , on ( - π p / 2 , π p / 2 ) , where π p / 2 = 0 1 ( 1 - s p ) - 1 / p . This allows us to extend sin p to complex domain by its Maclaurin series convergent on the disc { z : | z | < π p / 2 } . The question is whether this extensions sin p ( z ) satisfies (*) in the sense of differential equations in complex domain. This interesting...

Global continuum of positive solutions for discrete p -Laplacian eigenvalue problems

Dingyong Bai, Yuming Chen (2015)

Applications of Mathematics

We discuss the discrete p -Laplacian eigenvalue problem, Δ ( φ p ( Δ u ( k - 1 ) ) ) + λ a ( k ) g ( u ( k ) ) = 0 , k { 1 , 2 , ... , T } , u ( 0 ) = u ( T + 1 ) = 0 , where T > 1 is a given positive integer and φ p ( x ) : = | x | p - 2 x , p > 1 . First, the existence of an unbounded continuum 𝒞 of positive solutions emanating from ( λ , u ) = ( 0 , 0 ) is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any λ > 0 and all solutions are ordered. Thus the continuum 𝒞 is a monotone continuous curve globally defined for all λ > 0 .

Global structure of positive solutions for superlinear 2 m th-boundary value problems

Ruyun Ma, Yulian An (2010)

Czechoslovak Mathematical Journal

We consider boundary value problems for nonlinear 2 m th-order eigenvalue problem ( - 1 ) m u ( 2 m ) ( t ) = λ a ( t ) f ( u ( t ) ) , 0 < t < 1 , u ( 2 i ) ( 0 ) = u ( 2 i ) ( 1 ) = 0 , i = 0 , 1 , 2 , , m - 1 . where a C ( [ 0 , 1 ] , [ 0 , ) ) and a ( t 0 ) > 0 for some t 0 [ 0 , 1 ] , f C ( [ 0 , ) , [ 0 , ) ) and f ( s ) > 0 for s > 0 , and f 0 = , where f 0 = lim s 0 + f ( s ) / s . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.

Green-Liouville approximation and correct solvability in L p ( ) of the general Sturm-Liouville equation

Nina Chernyavskaya, Leonid Shuster (2024)

Czechoslovak Mathematical Journal

We consider the equation - ( r ( x ) y ' ( x ) ) ' + q ( x ) y ( x ) = f ( x ) , x , where f L p ( ) , p ( 1 , ) and r > 0 , 1 r L 1 loc ( ) , q L 1 loc ( ) . For particular equations of this form, we suggest some methods for the study of the question on requirements to the functions r and q under which the above equation is correctly solvable in the space L p ( ) , p ( 1 ...

Currently displaying 21 – 40 of 42