Bifurcation of periodic solutions to differential inequalities in
Variational inequalities are studied, where is a closed convex cone in , , is a matrix, is a small perturbation, a real parameter. The assumptions guaranteeing a Hopf bifurcation at some for the corresponding equation are considered and it is proved that then, in some situations, also a bifurcation of periodic solutions to our inequality occurs at some . Bifurcating solutions are obtained by the limiting process along branches of solutions to penalty problems starting at constructed...
Bifurcation phenomena in systems of ordinary differential equations which are invariant with respect to involutive diffeomorphisms, are studied. Teh "symmetry-breaking" bifurcation is investigated in detail.
In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.
Si dà un risultato di esistenza e unicità di una soluzione limitata in per un'equazione di Riccati infinito-dimensionale.
We show that under some assumptions on the function f the system generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.
We consider a quasilinear parabolic system which has the structure of Patlak-Keller-Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell population is described in terms of volume fraction or density. In the latter case, it is assumed that there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of solutions to the corresponding initial-boundary value problem and existence of space inhomogeneous stationary solutions are discussed....