Displaying 201 – 220 of 933

Showing per page

Control a state-dependent dynamic graph to a pre-specified structure

Fei Chen, Zengqiang Chen, Zhongxin Liu, Zhuzhi Yuan (2009)

Kybernetika

Recent years have witnessed an increasing interest in coordinated control of distributed dynamic systems. In order to steer a distributed dynamic system to a desired state, it often becomes necessary to have a prior control over the graph which represents the coupling among interacting agents. In this paper, a simple but compelling model of distributed dynamical systems operating over a dynamic graph is considered. The structure of the graph is assumed to be relied on the underling system's states....

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg, jean-baptiste pomet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Converse theorem for practical stability of nonlinear impulsive systems and applications

Boulbaba Ghanmi, Mohsen Dlala, Mohamed Ali Hammami (2018)

Kybernetika

The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of...

Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity

Ivana Kučerová (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation x ' ' ' + q ( t ) x - γ = 0 , by means of regularly varying functions, where γ is a positive constant and q is a positive continuous function on [ a , ) . It is shown that if q is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to 0 as t and to acquire...

Decentralized control and synchronization of time-varying complex dynamical network

Wei-Song Zhong, Jovan D. Stefanovski, Georgi M. Dimirovski, Jun Zhao (2009)

Kybernetika

A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...

Decoupling normalizing transformations and local stabilization of nonlinear systems

S. Nikitin (1996)

Mathematica Bohemica

The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.

Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach

Chinnamuniyandi Maharajan, Chandran Sowmiya, Changjin Xu (2024)

Kybernetika

This paper investigates the stability in an exponential sense of complex-valued Bidirectional Associative Memory (BAM) neural networks with time delays under the stochastic and impulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness of the equilibrium point for the proposed complex-valued neural networks are verified. Moreover, based on the Lyapunov - Krasovskii functional construction, matrix inequality techniques and stability theory, some novel time-delayed...

Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch

F. Crauste (2009)

Mathematical Modelling of Natural Phenomena

A nonlinear system of two delay differential equations is proposed to model hematopoietic stem cell dynamics. Each equation describes the evolution of a sub-population, either proliferating or nonproliferating. The nonlinearity accounting for introduction of nonproliferating cells in the proliferating phase is assumed to depend upon the total number of cells. Existence and stability of steady states are investigated. A Lyapunov functional is built to obtain the global asymptotic stability of the...

Currently displaying 201 – 220 of 933