Displaying 361 – 380 of 484

Showing per page

Stokes phenomenon, multisummability and differential Galois groups

Michèle Loday-Richaud (1994)

Annales de l'institut Fourier

We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle...

Summability of first integrals of a C ω -non-integrable resonant Hamiltonian system

Masafumi Yoshino (2012)

Banach Center Publications

This article studies the summability of first integrals of a C ω -non-integrable resonant Hamiltonian system. The first integrals are expressed in terms of formal exponential transseries and their Borel sums. Smooth Liouville integrability and a relation to the Birkhoff transformation are discussed from the point of view of the summability.

Sur les équations différentielles algébriques admettant des solutions avec une singularité essentielle

Ivan Pan, Marcos Sebastiani (2001)

Annales de l’institut Fourier

On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.

Sur les représentations de Krammer génériques

Ivan Marin (2007)

Annales de l’institut Fourier

Nous définissons une représentation des groupes d’Artin de type A D E par monodromie de systèmes KZ généralisés, dont nous montrons qu’elle est isomorphe à la représentation de Krammer généralisée définie originellement par A.M.Cohen et D.Wales, et indépendamment par F.Digne. Cela implique que tous les groupes d’Artin purs de type sphérique sont résiduellement nilpotents-sans-torsion, donc (bi-)ordonnables. En utilisant cette construction nous montrons que ces représentations irréductibles sont Zariski-denses...

Tempered solutions of 𝒟 -modules on complex curves and formal invariants

Giovanni Morando (2009)

Annales de l’institut Fourier

Let X be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of 𝒟 -modules on X induces a fully faithful functor on a subcategory of germs of formal holonomic 𝒟 -modules. Further, given a germ of holonomic 𝒟 -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .

Currently displaying 361 – 380 of 484