Displaying 21 – 40 of 72

Showing per page

On index theorems for linear ordinary differential operators

Michèle Loday-Richaud, Geneviève Pourcin (1997)

Annales de l'institut Fourier

We introduce and study the sheaf of Deligne to describe singular points of a linear differential operator D and we develop a technique based on homological algebra to prove index theorems for D .As particular cases, we obtain index theorems for D acting in spaces of multisummable series and a new proof of the index theorem of Malgrange in the space of convergent power series and of the index theorems of Ramis in the spaces of Gevrey series.We compute the values of these indices in terms of the formal...

On L w 2 -quasi-derivatives for solutions of perturbed general quasi-differential equations

Sobhy El-sayed Ibrahim (1999)

Czechoslovak Mathematical Journal

This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of n th order with complex coefficients M [ y ] - λ w y = w f ( t , y [ 0 ] , ... , y [ n - 1 ] ) , t [ a , b ) provided that all r th quasi-derivatives of solutions of M [ y ] - λ w y = 0 and all solutions of its normal adjoint M + [ z ] - λ ¯ w z = 0 are in L w 2 ( a , b ) and under suitable conditions on the function f .

On meromorphic solutions of the Riccati differential equations

Ran Ran Zhang, Zong Xuan Chen (2010)

Annales Polonici Mathematici

We investigate the growth and Borel exceptional values of meromorphic solutions of the Riccati differential equation w' = a(z) + b(z)w + w², where a(z) and b(z) are meromorphic functions. In particular, we correct a result of E. Hille [Ordinary Differential Equations in the Complex Domain, 1976] and get a precise estimate on the growth order of the transcendental meromorphic solution w(z); and if at least one of a(z) and b(z) is non-constant, then we show that w(z)...

On movable singularities of self-similar solutions of semilinear wave equations

Radosław A. Kycia (2012)

Banach Center Publications

In this paper we analyze movable singularities of the solutions of the equation for self-similar profiles resulting from semilinear wave equation. We study local analytic solutions around two fixed singularity points of this equation- ρ = 0 and ρ = 1. The movable singularities of local analytic solutions at the origin will be connected with those of the Lane-Emden equation. The function describing approximately their position on the complex plane will be derived. For ρ > 1 some topological considerations...

On q -summation and confluence

Lucia Di Vizio, Changgui Zhang (2009)

Annales de l’institut Fourier

This paper is divided in two parts. In the first part we study a convergent q -analog of the divergent Euler series, with q ( 0 , 1 ) , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding q -difference equation. In the second part, we work under the assumption q ( 1 , + ) . In this case, at least four different q -Borel sums of a divergent power series solution of an irregular singular...

On q-asymptotics for q-difference-differential equations with Fuchsian and irregular singularities

Alberto Lastra, Stéphane Malek, Javier Sanz (2012)

Banach Center Publications

This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...

On solutions of differential equations with ``common zero'' at infinity

Árpád Elbert, Jaromír Vosmanský (1997)

Archivum Mathematicum

The zeros c k ( ν ) of the solution z ( t , ν ) of the differential equation z ' ' + q ( t , ν ) z = 0 are investigated when lim t q ( t , ν ) = 1 , | q ( t , ν ) - 1 | d t < and q ( t , ν ) has some monotonicity properties as t . The notion c κ ( ν ) is introduced also for κ real, too. We are particularly interested in solutions z ( t , ν ) which are “close" to the functions sin t , cos t when t is large. We derive a formula for d c κ ( ν ) / d ν and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair J ν ( t ) , Y ν ( t ) . We show the concavity of c κ ( ν ) for | ν | 1 2 and also...

On the exact WKB analysis of microdifferential operators of WKB type

Takashi Aoki, Takahiro Kawai, Tatsuya Koike, Yoshitsugu Takei (2004)

Annales de l’institut Fourier

We first introduce the notion of microdifferential operators of WKB type and then develop their exact WKB analysis using microlocal analysis; a recursive way of constructing a WKB solution for such an operator is given through the symbol calculus of microdifferential operators, and their local structure near their turning points is discussed by a Weierstrass-type division theorem for such operators. A detailed study of the Berk-Book equation is given in Appendix.

Currently displaying 21 – 40 of 72