On the growth of algebroid solutions of algebraic differential equations.
We investigate how the growth of an algebroid function could be affected by the distribution of the arguments of its a-points in the complex plane. We give estimates of the growth order of an algebroid function with radially distributed values, which are counterparts of results for meromorphic functions with radially distributed values.
In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation where , are complex constants that satisfy and
The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation where is a difference-differential polynomial in of degree with small functions of as its coefficients, , are nonzero rational functions and , are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.