Page 1 Next

Displaying 1 – 20 of 1682

Showing per page

SAK principle for a class of Grushin-type operators.

Lidia Maniccia, Marco Mughetti (2006)

Revista Matemática Iberoamericana

We prove Fefferman's SAK Principle for a class of hypoelliptic operators on R2 whose nonnegative symbol vanishes anisotropically on the characteristic manifold.

Scalar boundary value problems on junctions of thin rods and plates

R. Bunoiu, G. Cardone, S. A. Nazarov (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive asymptotic formulas for the solutions of the mixed boundary value problem for the Poisson equation on the union of a thin cylindrical plate and several thin cylindrical rods. One of the ends of each rod is set into a hole in the plate and the other one is supplied with the Dirichlet condition. The Neumann conditions are imposed on the whole remaining part of the boundary. Elements of the junction are assumed to have contrasting properties so that the small parameter, i.e. the relative...

Scalar differential invariants of symplectic Monge-Ampère equations

Alessandro Paris, Alexandre Vinogradov (2011)

Open Mathematics

All second order scalar differential invariants of symplectic hyperbolic and elliptic Monge-Ampère equations with respect to symplectomorphisms are explicitly computed. In particular, it is shown that the number of independent second order invariants is equal to 7, in sharp contrast with general Monge-Ampère equations for which this number is equal to 2. We also introduce a series of invariant differential forms and vector fields which allow us to construct numerous scalar differential invariants...

Scattering amplitude for the Schrödinger equation with strong magnetic field

Laurent Michel (2005)

Journées Équations aux dérivées partielles

In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.

Scattering and resolvent on geometrically finite hyperbolic manifolds with rational cusps

Colin Guillarmou (2005/2006)

Séminaire Équations aux dérivées partielles

These notes summarize the papers [8, 9] on the analysis of resolvent, Eisenstein series and scattering operator for geometrically finite hyperbolic quotients with rational non-maximal rank cusps. They complete somehow the talk given at the PDE seminar of Ecole Polytechnique in october 2005.

Scattering for 1D cubic NLS and singular vortex dynamics

Valeria Banica, Luis Vega (2012)

Journal of the European Mathematical Society

We study the stability of self-similar solutions of the binormal flow, which is a model for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions χ a ( t , x ) form a family of evolving regular curves in 3 that develop a singularity in finite time, indexed by a parameter a > 0 . We consider curves that are small regular perturbations of χ a ( t 0 , x ) for a fixed time t 0 . In particular, their curvature is not vanishing at infinity, so we are not in the context of known results of local existence...

Currently displaying 1 – 20 of 1682

Page 1 Next