The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 441 –
460 of
604
We present an integral equation method for solving boundary value
problems of the Helmholtz equation in unbounded domains. The
method relies on the factorisation of one of the
Calderón projectors by an operator approximating the exterior
admittance (Dirichlet to Neumann) operator of the scattering
obstacle. We show how the pseudo-differential calculus allows us
to construct such approximations and that this yields integral
equations without internal resonances and being well-conditioned
at all...
In the case of an elastic strip we exhibit two properties of
dispersion curves λn,n ≥ 1, that were not pointed out
previously. We show cases where λ'n(0) = λ''n(0) = λ'''n(0) = 0 and we point out that these curves are not automatically monotoneous on
. The non monotonicity was an open question (see [2],
for example) and, for the first time, we give a rigourous answer. Recall the
characteristic property of the dispersion curves: {λn(p);n ≥ 1} is
the set of eigenvalues of Ap, counted with their...
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...
∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”In this work we analyse the nonlinear Cauchy problem
(∂tt − ∆)u(t, x) = ( λg + O(1/(1 + t + |x|)^a) ) ) ∇t,x u(t, x), ∇t,x u(t, x) ),
whit initial data u(0, x) = e u0 (x), ut (0, x) = e u1 (x). We assume a ≥ 1,
x ∈ R^n (n ≥ 3) and g the matrix related to the Minkowski space. It can be
considerated a pertubation of the case when the quadratic term has constant
coefficient λg (see Klainerman [6])
We...
In this paper we study a linear population dynamics model. In this model, the birth process is described by a nonlocal term and the initial distribution is unknown. The aim of this paper is to use a controllability result of the adjoint system for the computation of the density of individuals at some time .
We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...
The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator () in the rectangle or with the Kolmogorov-type operator () in the rectangle , under an additive control supported in an open subset of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for and that there is no time for which it is null controllable for ....
We study the null controllability of the parabolic equation associated with the Grushin-type operator , in the rectangle , under an additive control supported in an open subset of . We prove that the equation is null controllable in any positive time for and that there is no time for which it is null controllable for . In the transition regime and when is a strip ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks to the particular...
The internal and boundary exact null
controllability of nonlinear convective heat equations with homogeneous
Dirichlet boundary conditions are studied. The methods we use combine
Kakutani fixed point theorem, Carleman estimates for the backward adjoint
linearized system, interpolation inequalities and some estimates in the
theory of parabolic boundary value problems in Lk.
Currently displaying 441 –
460 of
604