On functions, whose lines of steepest descent bend proportionally to level lines
We are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for m Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp-Lieb inequality and of its reverse form, which follow exactly the same lines.
We give new and simple sufficient conditions for Gaussian upper bounds for a convolution semigroup on a unimodular locally compact group. These conditions involve certain semigroup estimates in L²(G). We describe an application for estimates of heat kernels of complex subelliptic operators on unimodular Lie groups.
The present part of the paper completes the discussion in Part I in two directions. Firstly, in Section 5 a number of existence theorems for a solution to Problem III (principle of minimum potential energy) is established. Secondly, Section 6 and 7 are devoted to a discussion of both the classical and the abstract approach to the duality theory as well as the relationship between the solvability of Problem III and its dual one.
The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as...
We discuss how the choice of the functional setting and the definition of the weak solution affect the existence and uniqueness of the solution to the equation where is a very general domain in , including the case .
We characterize some -limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained -limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence.
We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.