An Elementary Partial Regularity Proof for Vector-Valued Obstacle Problems.
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...
Let be a non-negative function of class from to , which vanishes exactly at two points and . Let be the set of functions of a real variable which tend to at and to at and whose one dimensional energyis finite. Assume that there exist two isolated minimizers and of the energy over . Under a mild coercivity condition on the potential and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at and , it is possible to prove...
Let W be a non-negative function of class C3 from to , which vanishes exactly at two points a and b. Let S1(a, b) be the set of functions of a real variable which tend to a at -∞ and to b at +∞ and whose one dimensional energy is finite. Assume that there exist two isolated minimizers z+ and z- of the energy E1 over S1(a, b). Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z+ and...
We give a sufficient condition under which the solutions of the energy-critical nonlinear wave equation and Schrödinger equation with inverse-square potential blow up. The method is a modified variational approach, in the spirit of the work by Ibrahim et al. [Anal. PDE 4 (2011), 405-460].
The focusing nonlinear Schrödinger equation (NLS) with confining harmonic potential , is considered. By modifying a variational technique, we shall give a sufficient condition under which the corresponding solution blows up.