Elliptic boundary value problems with nonvariational perturbation and the finite element method
The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...
We use the Galerkin averaging method to construct a coordinate transformation putting a nonlinear PDE in Poincaré normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a differential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is...
We introduce a method to treat a semilinear elliptic equation in (see equation (1) below). This method is of a perturbative nature. It permits us to skip the problem of lack of compactness of but requires an oscillatory behavior of the potential b.
On définit des invariants entiers mesurant l’irrégularité d’un point singulier d’un système différentiel. Les propriétés de ces invariants, l’étude de la variation de l’ordre de la singularité par perturbation linéaire ainsi qu’une généralisation d’un théorème de W. Jurkat et D.A. Lutz permettent de donner une méthode de calcul de cet ordre.