Displaying 21 – 40 of 133

Showing per page

Evolutionary Games in Space

N. Kronik, Y. Cohen (2009)

Mathematical Modelling of Natural Phenomena

The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...

Galerkin averaging method and Poincaré normal form for some quasilinear PDEs

Dario Bambusi (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We use the Galerkin averaging method to construct a coordinate transformation putting a nonlinear PDE in Poincaré normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a differential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is...

Invariants mesurant l'irrégularité en un point singulier des systèmes d'équations différentielles linéaires

R. Gérard, A. M. Levelt (1973)

Annales de l'institut Fourier

On définit des invariants entiers mesurant l’irrégularité d’un point singulier d’un système différentiel. Les propriétés de ces invariants, l’étude de la variation de l’ordre de la singularité par perturbation linéaire ainsi qu’une généralisation d’un théorème de W. Jurkat et D.A. Lutz permettent de donner une méthode de calcul de cet ordre.

Currently displaying 21 – 40 of 133