Displaying 81 – 100 of 120

Showing per page

On the critical Neumann problem with lower order perturbations

Jan Chabrowski, Bernhard Ruf (2007)

Colloquium Mathematicae

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator -Δ with the Neumann boundary conditions.

On the global existence for the axisymmetric Euler equations

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani (2008)

Journées Équations aux dérivées partielles

This paper deals with the global well-posedness of the 3 D axisymmetric Euler equations for initial data lying in critical Besov spaces B p , 1 1 + 3 p . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .

On the Neumann problem with combined nonlinearities

Jan Chabrowski, Jianfu Yang (2005)

Annales Polonici Mathematici

We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.

On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity

J. Chabrowski, Shusen Yan (2002)

Colloquium Mathematicae

We consider the Neumann problem for the equation - Δ u - λ u = Q ( x ) | u | 2 * - 2 u , u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues λ k - 1 and λ k . Applying a min-max principle based on topological linking we prove the existence of a solution.

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...

On the p-biharmonic operator with critical Sobolev exponent

Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)

Applicationes Mathematicae

We study the existence of solutions for a p-biharmonic problem with a critical Sobolev exponent and Navier boundary conditions, using variational arguments. We establish the existence of a precise interval of parameters for which our problem admits a nontrivial solution.

Perte de régularité pour les équations d’ondes sur-critiques

Gilles Lebeau (2005)

Bulletin de la Société Mathématique de France

On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans d , u + u p = 0 , p impair, avec d 3 et p > ( d + 2 ) / ( d - 2 ) , est mal posé dans H σ pour tout σ ] 1 , σ crit [ , où σ crit = d / 2 - 2 / ( p - 1 ) est l’exposant critique.

Currently displaying 81 – 100 of 120