Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions.
We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧, ⎨ ⎩ for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.
We consider the linearized elasticity system in a multidomain of . This multidomain is the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam with fixed height and small cross section of radius . The lateral boundary of the plate and the top of the beam are assumed to be clamped. When ε and tend to zero simultaneously, with , we identify the limit problem. This limit problem involves six junction conditions.
The long-time asymptotics of certain nonlinear , nonlocal, diffusive equations with a gradient flow structure are analyzed. In particular, a result of Benedetto, Caglioti, Carrillo and Pulvirenti [4] guaranteeing eventual relaxation to equilibrium velocities in a spatially homogencous model of granular flow is extended and quantified by computing explicit relaxation rates. Our arguments rely on establishing generalizations of logarithmic Sobolev inequalities and mass transportation inequalities,...
This work is concerned with the proof of decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation . The coefficient consists of an increasing smooth function and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
We study the decay in time of the spatial -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.
We prove the --time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the --time decay estimates.
We consider the initial-value problem for a linear hyperbolic parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove time decay estimates for the solution of the associated linear Cauchy problem.
Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle...