Displaying 701 – 720 of 1421

Showing per page

Local Energy Decay in Even Dimensions for the Wave Equation with a Time-Periodic Non-Trapping Metric and Applications to Strichartz Estimates

Kian, Yavar (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35B40, 35L15.We obtain local energy decay as well as global Strichartz estimates for the solutions u of the wave equation ∂t2 u-divx(a(t,x)∇xu) = 0, t ∈ R, x ∈ Rn, with time-periodic non-trapping metric a(t,x) equal to 1 outside a compact set with respect to x. We suppose that the cut-off resolvent Rχ(θ) = χ(U(T, 0)− e−iθ)−1χ, where U(T, 0) is the monodromy operator and T the period of a(t,x), admits an holomorphic continuation to {θ ∈ C : Im(θ) ≥ 0}, for...

Localization effects for eigenfunctions near to the edge of a thin domain

Serguei A. Nazarov (2002)

Mathematica Bohemica

It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain Ω h is localized either at the whole lateral surface Γ h of the domain, or at a point of Γ h , while the eigenfunction decays exponentially inside Ω h . Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too.

Logarithmic decay of the energy for an hyperbolic-parabolic coupled system

Ines Kamoun Fathallah (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...

Logarithmic decay of the energy for an hyperbolic-parabolic coupled system

Ines Kamoun Fathallah (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...

Logarithmically improved blow-up criterion for smooth solutions to the Leray- α -magnetohydrodynamic equations

Ines Ben Omrane, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa (2019)

Archivum Mathematicum

In this paper, the Cauchy problem for the 3 D Leray- α -MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray- α -MHD model in terms of the magnetic field B only in the framework of homogeneous Besov space with negative index.

Long time asymptotics of the Camassa–Holm equation on the half-line

Anne Boutet de Monvel, Dmitry Shepelsky (2009)

Annales de l’institut Fourier

We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation u t - u t x x + 2 u x + 3 u u x = 2 u x u x x + u u x x x on the half-line x 0 . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane x > 0 , t > 0 having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...

Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity

Irena Pawłow, Wojciech M. Zajączkowski (2010)

Annales Polonici Mathematici

The long-time behaviour of a unique regular solution to the Cahn-Hilliard system coupled with viscoelasticity is studied. The system arises as a model of the phase separation process in a binary deformable alloy. It is proved that for a sufficiently regular initial data the trajectory of the solution converges to the ω-limit set of these data. Moreover, it is shown that every element of the ω-limit set is a solution of the corresponding stationary problem.

Long time estimate of solutions to 3d Navier-Stokes equations coupled with heat convection

Jolanta Socała, Wojciech M. Zajączkowski (2012)

Applicationes Mathematicae

We examine the Navier-Stokes equations with homogeneous slip boundary conditions coupled with the heat equation with homogeneous Neumann conditions in a bounded domain in ℝ³. The domain is a cylinder along the x₃ axis. The aim of this paper is to show long time estimates without assuming smallness of the initial velocity, the initial temperature and the external force. To prove the estimate we need however smallness of the L₂ norms of the x₃-derivatives of these three quantities.

Long time existence of regular solutions to 3d Navier-Stokes equations coupled with heat convection

Jolanta Socała, Wojciech M. Zajączkowski (2012)

Applicationes Mathematicae

We prove long time existence of regular solutions to the Navier-Stokes equations coupled with the heat equation. We consider the system in a non-axially symmetric cylinder, with the slip boundary conditions for the Navier-Stokes equations, and the Neumann condition for the heat equation. The long time existence is possible because the derivatives, with respect to the variable along the axis of the cylinder, of the initial velocity, initial temperature and external force are assumed to be sufficiently...

Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball

Vladimir Varlamov (2000)

Studia Mathematica

The nonlinear heat equation with a fractional Laplacian [ u t + ( - Δ ) α / 2 u = u 2 , 0 < α 2 ] , is considered in a unit ball B . Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space C ( [ 0 , ) , H κ ( B ) ) with κ < α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 < κ < α - 1/2, and the higher-order long-time asymptotics is calculated.

Long-time asymptotics of solutions to some nonlinear wave equations

Grzegorz Karch (2000)

Banach Center Publications

In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.

Currently displaying 701 – 720 of 1421