Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary.
We consider the existence, both locally and globally in time, the decay and the blow up of the solution for the extensible beam equation with nonlinear damping and source terms. We prove the existence of the solution by Banach contraction mapping principle. The decay estimates of the solution are proved by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, we prove that the solution blow up in finite time.
A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox et al. [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of , is equivalent to finding the critical points...
We study the existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential. The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and global-in-time solutions, and also a kind of stability of global solutions.