Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field
This paper concerns the study of the numerical approximation for the following boundary value problem: where . We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
In this paper, we consider the following initial-boundary value problem where is a bounded domain in with smooth boundary , is an elliptic operator, is a positive parameter, is a positive, increasing, convex function for , and with . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation as goes to zero. We also show that the above result remains...
The existence, uniqueness and large time behaviour of radially symmetric solutions to a chemotaxis system in the plane ℝ² are studied for the (supercritical) value of mass greater than 8π.
In this paper, we consider the existence of a pullback attractor for the random dynamical system generated by stochastic two-compartment Gray-Scott equation for a multiplicative noise with the homogeneous Neumann boundary condition on a bounded domain of space dimension n ≤ 3. We first show that the stochastic Gray-Scott equation generates a random dynamical system by transforming this stochastic equation into a random one. We also show that the existence of a random attractor for the stochastic...
We consider a nonlocal convection-diffusion equation , where J is a probability density. We supplement this equation with step-like initial conditions and prove the convergence of the corresponding solutions towards a rarefaction wave, i.e. a unique entropy solution of the Riemann problem for the inviscid Burgers equation.
In this paper we explore a new model of field carcinogenesis, inspired by lung cancer precursor lesions, which includes dynamics of a spatially distributed population of pre-cancerous cells c(t, x), constantly supplied by an influx μ of mutated normal cells. Cell proliferation is controlled by growth factor molecules bound to cells, b(t, x). Free growth factor molecules g(t, x) are produced by precancerous cells and may diffuse before they become bound to other cells. The purpose of modelling is...
We report on new results concerning the global well-posedness, dissipativity and attractors for the quintic wave equations in bounded domains of with damping terms of the form , where or . The main ingredient of the work is the hidden extra regularity of solutions that does not follow from energy estimates. Due to the extra regularity of solutions existence of a smooth attractor then follows from the smoothing property when . For existence of smooth attractors is more complicated and follows...