Displaying 541 – 560 of 920

Showing per page

On weighted estimates of solutions of nonlinear elliptic problems

Igor V. Skrypnik, Dmitry V. Larin (1999)

Mathematica Bohemica

The paper is devoted to the estimate u(x,k)Kk{capp,w(F)pw(B(x,))} 1p-1, 2 p < n for a solution of a degenerate nonlinear elliptic equation in a domain B ( x 0 , 1 ) F , F B ( x 0 , d ) = { x n | x 0 - x | < d } , d < 1 2 , under the boundary-value conditions u ( x , k ) = k for x F , u ( x , k ) = 0 for x B ( x 0 , 1 ) and where 0 < ρ d i s t ( x , F ) , w ( x ) is a weighted function from some Muckenhoupt class, and c a p p , w ( F ) , w ( B ( x , ρ ) ) are weighted capacity and measure of the corresponding sets.

Ondes progressives pour l’équation de Gross-Pitaevskii

Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut (2007/2008)

Séminaire Équations aux dérivées partielles

Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces

Vagif S. Guliyev, Mehriban N. Omarova (2016)

Open Mathematics

We obtain the global weighted Morrey-type regularity of the solution of the regular oblique derivative problem for linear uniformly parabolic operators with VMO coefficients. We show that if the right-hand side of the parabolic equation belongs to certain generalized weighted Morrey space Mp,ϕ(Q, w), than the strong solution belongs to the generalized weighted Sobolev- Morrey space [...] W˙2,1p,φ(Q,ω) W ˙ 2 , 1 p , ϕ Q , ω .

Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s

Alberto Farina, Enrico Valdinoci (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We prove pointwise gradient bounds for entire solutions of pde’s of the form      ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.

Currently displaying 541 – 560 of 920