Displaying 141 – 160 of 920

Showing per page

Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena

José M. Arrieta, Anibal Rodriguez-Bernal, Philippe Souplet (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions u : either the space derivative u x blows up in finite time (with u itself remaining bounded), or u is global and converges in C 1 norm to the unique steady state. The main difficulty is to prove C 1 boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of...

Boundedness of the solution of the third problem for the Laplace equation

Dagmar Medková (2005)

Czechoslovak Mathematical Journal

A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.

Bounds for KdV and the 1-d cubic NLS equation in rough function spaces

Herbert Koch (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time H s bounds in terms of the H s size of the initial data for s - 1 4 (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in H - 1 (joint work with T. Buckmaster [2]).

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

Currently displaying 141 – 160 of 920