Boundary value problem with integral conditions for a linear third-order equation.
We study the behaviour of weak solutions (as well as their gradients) of boundary value problems for quasi-linear elliptic divergence equations in domains extending to infinity along a cone.
We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions : either the space derivative blows up in finite time (with itself remaining bounded), or is global and converges in norm to the unique steady state. The main difficulty is to prove boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of...
This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function and the growth term under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that
A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.
We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time bounds in terms of the size of the initial data for (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in (joint work with T. Buckmaster [2]).
Let be a bounded domain of class in N and let be a compact subset of . Assume that and denote by the maximal solution of in which vanishes on . We obtain sharp upper and lower estimates for in terms of the Bessel capacity and prove that is -moderate. In addition we describe the precise asymptotic behavior of at points , which depends on the “density” of at , measured in terms of the capacity .