Displaying 201 – 220 of 5232

Showing per page

A population biological model with a singular nonlinearity

Sayyed Hashem Rasouli (2014)

Applications of Mathematics

We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form - div ( | x | - α p | u | p - 2 u ) = | x | - ( α + 1 ) p + β a u p - 1 - f ( u ) - c u γ , x Ω , u = 0 , x Ω , where Ω is a bounded smooth domain of N with 0 Ω , 1 < p < N , 0 α < ( N - p ) / p , γ ( 0 , 1 ) , and a , β , c and λ are positive parameters. Here f : [ 0 , ) is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of a positive solution when f satisfies certain additional conditions. We use the method of sub-supersolutions...

A potential theoretic inequality

Maria Alessandra Ragusa, Pietro Zamboni (2001)

Czechoslovak Mathematical Journal

In this paper is proved a weighted inequality for Riesz potential similar to the classical one by D. Adams. Here the gain of integrability is not always algebraic, as in the classical case, but depends on the growth properties of a certain function measuring some local potential of the weight.

A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology

M. Rioux, Y. Bourgault (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

One of the current debate about simulating the electrical activity in the heart is the following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination of dimensional and asymptotic analysis, together with the well-known Mitchell − Schaeffer model, it is shown...

A priori error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of &#x1d4aa;(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

A priori error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

A priori error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

Currently displaying 201 – 220 of 5232