A pattern formation problem on the sphere.
We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form where is a bounded smooth domain of with , , , , and , , and are positive parameters. Here is a continuous function. This model arises in the studies of population biology of one species with representing the concentration of the species. We discuss the existence of a positive solution when satisfies certain additional conditions. We use the method of sub-supersolutions...
In this paper is proved a weighted inequality for Riesz potential similar to the classical one by D. Adams. Here the gain of integrability is not always algebraic, as in the classical case, but depends on the growth properties of a certain function measuring some local potential of the weight.
One of the current debate about simulating the electrical activity in the heart is the following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination of dimensional and asymptotic analysis, together with the well-known Mitchell − Schaeffer model, it is shown...
We consider the quasilinear equation , and present the proof of the local existence of positive radial solutions near under suitable conditions on . Moreover, we provide a priori estimates of positive radial solutions near when for is bounded near .
We review some recent results concerning a priori bounds for solutions of superlinear parabolic problems and their applications.
We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.