Displaying 21 – 40 of 501

Showing per page

Selfadjoint Extensions for the Elasticity System in Shape Optimization

Serguei A. Nazarov, Jan Sokołowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Two approaches are proposed to modelling of topological variations in elastic solids. The first approach is based on the theory of selfadjoint extensions of differential operators. In the second approach function spaces with separated asymptotics and point asymptotic conditions are introduced, and a variational formulation is established. For both approaches, accuracy estimates are derived.

Self-improving bounds for the Navier-Stokes equations

Jean-Yves Chemin, Fabrice Planchon (2012)

Bulletin de la Société Mathématique de France

We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to - 1 . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.

Selfsimilar profiles in large time asymptotics of solutions to damped wave equations

Grzegorz Karch (2000)

Studia Mathematica

Large time behavior of solutions to the generalized damped wave equation u t t + A u t + ν B u + F ( x , t , u , u t , u ) = 0 for ( x , t ) n × [ 0 , ) is studied. First, we consider the linear nonhomogeneous equation, i.e. with F = F(x,t) independent of u. We impose conditions on the operators A and B, on F, as well as on the initial data which lead to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied to the equation where A u t = u t , B u = - Δ u , and the nonlinear term is either | u t | q - 1 u t or | u | α - 1 u . In this case, the asymptotic profile of solutions is given...

Self-similar solutions for the two-dimensional Nernst-Planck-Debye system

Łukasz Paszkowski (2012)

Applicationes Mathematicae

We investigate the two-component Nernst-Planck-Debye system by a numerical study of self-similar solutions using the Runge-Kutta method of order four and comparing the results obtained with the solutions of a one-component system. Properties of the solutions indicated by numerical simulations are proved and an existence result is established based on comparison arguments for singular ordinary differential equations.

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Self-similarity in chemotaxis systems

Yūki Naito, Takashi Suzuki (2008)

Colloquium Mathematicae

We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.

Semiclassical measures for the Schrödinger equation on the torus

Nalini Anantharaman, Fabricio Macià (2014)

Journal of the European Mathematical Society

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying...

Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential

Jaeyoung Byeon, Kazunaga Tanaka (2013)

Journal of the European Mathematical Society

We consider a singularly perturbed elliptic equation ϵ 2 Δ u - V ( x ) u + f ( u ) = 0 , u ( x ) > 0 on N , 𝚕𝚒𝚖 x u ( x ) = 0 , where V ( x ) > 0 for any x N . The singularly perturbed problem has corresponding limiting problems Δ U - c U + f ( U ) = 0 , U ( x ) > 0 on N , 𝚕𝚒𝚖 x U ( x ) = 0 , c > 0 . Berestycki-Lions found almost necessary and sufficient conditions on nonlinearity f for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of potential V under possibly general conditions on f . In...

Semiclassical states of nonlinear Schrödinger equations with bounded potentials

Antonio Ambrosetti, Marino Badiale, Silvia Cingolani (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Using some perturbation results in critical point theory, we prove that a class of nonlinear Schrödinger equations possesses semiclassical states that concentrate near the critical points of the potential V .

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Semilinear elliptic problems in unbounded domains

Aleksandra Orpel (2006)

Applicationes Mathematicae

We investigate the existence of positive solutions and their continuous dependence on functional parameters for a semilinear Dirichlet problem. We discuss the case when the domain is unbounded and the nonlinearity is smooth and convex on a certain interval only.

Semilinear elliptic problems with nonlinearities depending on the derivative

David Arcoya, Naira del Toro (2003)

Commentationes Mathematicae Universitatis Carolinae

We deal with the boundary value problem - Δ u ( x ) = λ 1 u ( x ) + g ( u ( x ) ) + h ( x ) , x Ω u ( x ) = 0 , x Ω where Ω N is an smooth bounded domain, λ 1 is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on Ω , h L max { 2 , N / 2 } ( Ω ) and g : N is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that g satisfies certain conditions on the origin and at infinity.

Currently displaying 21 – 40 of 501