The search session has expired. Please query the service again.
Displaying 21 –
40 of
503
We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in (boundedness and stabilization as ) are shown.
Two approaches are proposed to modelling of topological variations in elastic solids. The first approach is based on the theory of selfadjoint extensions of differential operators. In the second approach function spaces with separated asymptotics and point asymptotic conditions are introduced, and a variational formulation is established. For both approaches, accuracy estimates are derived.
We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.
Large time behavior of solutions to the generalized damped wave equation for is studied. First, we consider the linear nonhomogeneous equation, i.e. with F = F(x,t) independent of u. We impose conditions on the operators A and B, on F, as well as on the initial data which lead to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied to the equation where , , and the nonlinear term is either or . In this case, the asymptotic profile of solutions is given...
We investigate the two-component Nernst-Planck-Debye system by a numerical study of self-similar solutions using the Runge-Kutta method of order four and comparing the results obtained with the solutions of a one-component system. Properties of the solutions indicated by numerical simulations are proved and an existence result is established based on comparison arguments for singular ordinary differential equations.
In this paper we examine self-similar solutions to the system
, i = 1,…,m, , t > 0,
, i = 1,…,m, ,
where m > 1 and , to describe asymptotics near the blow up point.
We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.
In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying...
We consider a singularly perturbed elliptic equation on , , where for any . The singularly perturbed problem has corresponding limiting problems on , . Berestycki-Lions found almost necessary and sufficient conditions on nonlinearity for existence of a solution of the limiting problem. There have been endeavors to construct solutions of the singularly perturbed problem concentrating around structurally stable critical points of potential under possibly general conditions on . In...
Using some perturbation results in critical point theory, we prove that a class of nonlinear Schrödinger equations possesses semiclassical states that concentrate near the critical points of the potential .
Motivated by structured parasite populations in aquaculture we consider a class of
size-structured population models, where individuals may be recruited into the population
with distributed states at birth. The mathematical model which describes the evolution of
such a population is a first-order nonlinear partial integro-differential equation of
hyperbolic type. First, we use positive perturbation arguments and utilise results from
the spectral...
We investigate the existence of positive solutions and their continuous dependence on functional parameters for a semilinear Dirichlet problem. We discuss the case when the domain is unbounded and the nonlinearity is smooth and convex on a certain interval only.
We deal with the boundary value problem
where is an smooth bounded domain, is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on , and is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that satisfies certain conditions on the origin and at infinity.
Currently displaying 21 –
40 of
503