Displaying 61 – 80 of 112

Showing per page

Instability of the stationary solutions of generalized dissipative Boussinesq equation

Amin Esfahani (2014)

Applications of Mathematics

In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.

Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities

Martin Väth (2014)

Mathematica Bohemica

We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...

Integrability for solutions to quasilinear elliptic systems

Francesco Leonetti, Pier Vincenzo Petricca (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution.

Integral inequalities and summability of solutions of some differential problems

Lucio Boccardo (2000)

Banach Center Publications

The aim of this note is to indicate how inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is greater than k ( k I R + ) can be used in order to prove summability properties of u (joint work with Daniela Giachetti). This method was introduced by Ennio De Giorgi and Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems. In some joint works with Thierry Gallouet, inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is less than k ( k I R + ) or...

Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point

J. C. Tzou, A. Bayliss, B.J. Matkowsky, V.A. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...

Currently displaying 61 – 80 of 112