The search session has expired. Please query the service again.

Displaying 81 – 100 of 212

Showing per page

L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire

Ahmed Hamydy (2008)

Annales mathématiques Blaise Pascal

Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation U t = A U x p - 2 U x x + K U q . On prouve que ces solutions existent si et seulement si q < 1 et c < 0 ou bien q p - 1 et c > 0 . On donne aussi le comportement asymptotique de ces solutions.

Lifshitz tails for some non monotonous random models

Frédéric Klopp, Shu Nakamura (2007/2008)

Séminaire Équations aux dérivées partielles

In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.

Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions

Irina Kmit (2007)

Commentationes Mathematicae Universitatis Carolinae

We study one-dimensional linear hyperbolic systems with L -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.

Currently displaying 81 – 100 of 212