Displaying 1041 – 1060 of 5234

Showing per page

Controllable systems of partial differential equations

František Tumajer (1986)

Aplikace matematiky

In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.

Control-theoretic properties of structural acoustic models with thermal effects, II. Trace regularity results

Francesca Bucci (2008)

Applicationes Mathematicae

We consider a structural acoustic problem with the flexible wall modeled by a thermoelastic plate, subject to Dirichlet boundary control in the thermal component. We establish sharp regularity results for the traces of the thermal variable on the boundary in case the system is supplemented with clamped mechanical boundary conditions. These regularity estimates are most crucial for validity of the optimal control theory developed by Acquistapace et al. [Adv. Differential Equations, 2005], which ensures...

Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria

Felipe Alvarez, Hedy Attouch (2001)

ESAIM: Control, Optimisation and Calculus of Variations

It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...

Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria

Felipe Alvarez, Hedy Attouch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...

Convergence estimate for second order Cauchy problems with a small parameter

Branko Najman (1998)

Czechoslovak Mathematical Journal

We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter ε . The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.

Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics

Francesca Da Lio, N. Forcadel, Régis Monneau (2008)

Journal of the European Mathematical Society

We prove the convergence at a large scale of a non-local first order equation to an anisotropic mean curvature motion. The equation is an eikonal-type equation with a velocity depending in a non-local way on the solution itself, which arises in the theory of dislocation dynamics. We show that if an anisotropic mean curvature motion is approximated by equations of this type then it is always of variational type, whereas the converse is true only in dimension two.

Convergence of minimax structures and continuation of critical points for singularly perturbed systems

Benedetta Noris, Hugo Tavares, Susanna Terracini, Gianmaria Verzini (2012)

Journal of the European Mathematical Society

In the recent literature, the phenomenon of phase separation for binary mixtures of Bose–Einstein condensates can be understood, from a mathematical point of view, as governed by the asymptotic limit of the stationary Gross–Pitaevskii system - Δ u + u 3 + β u v 2 = λ u , - Δ v + v 3 + β u 2 v = μ v , u , v H 0 1 ( Ω ) , u , v > 0 , as the interspecies scattering length β goes to + . For this system we consider the associated energy functionals J β , β ( 0 , + ) , with L 2 -mass constraints, which limit J (as β + ) is strongly irregular. For such functionals, we construct multiple critical points via a common...

Convergence of Rothe's method in Hölder spaces

Norio Kikuchi, Jozef Kačur (2003)

Applications of Mathematics

The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.

Currently displaying 1041 – 1060 of 5234