Solution of inhomogeneous quasilinear Dirichlet and Neumann problems by reduction to the Poisson equation and a posteriori error bounds.
It is proved that parabolic equations with infinite delay generate -semigroup on the space of initial conditions, such that local stable and unstable manifolds can be constructed for a fully nonlinear problems with help of usual methods of the theory of parabolic equations.
Dans ce travail, on s’intéresse à l’existence globale de solutions classiques et au sens de Shatah-Struwe de l’équation des ondes critique à coefficients variables en dimension d’espaceoù est une fonction régulière à valeurs dans les matrices définies positives, valant l’identité en dehors d’un compact fixe.
Si dà una condizione sufficiente per la esistenza di una soluzione in uno spazio di Gevrey , razionale , , di una equazione lineare a derivate parziali a coefficienti costanti , quando . La dimostrazione completa dei risultati ottenuti è contenuta in una nota dell’autore in corso di pubblicazione su "Astérisque".
We describe a constructive algorithm for obtaining smooth solutions of a nonlinear, nonhyperbolic pair of balance laws modeling incompressible two-phase flow in one space dimension and time. Solutions are found as stationary solutions of a related hyperbolic system, based on the introduction of an artificial time variable. As may be expected for such nonhyperbolic systems, in general the solutions obtained do not satisfy both components of the given initial data. This deficiency may be overcome,...