Displaying 81 – 100 of 110

Showing per page

Systèmes hyperboliques et viscosité évanescente

Frédéric Rousset (2002/2003)

Séminaire Bourbaki

Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses t u ε + x f ( u ε ) = ε x x u ε de systèmes strictement hyperboliques t u + x f ( u ) = 0 en une dimension d’espace. Ils ont en particulier montré l’existence globale ( t 0 ), l’unicité et la stabilité des solutions et justifié la convergence quand ε tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues...

Systems of Clairaut type

Shyuichi Izumiya (1993)

Colloquium Mathematicae

A characterization of systems of first order differential equations with (classical) complete solutions is given. Systems with (classical) complete solutions that consist of hyperplanes are also characterized.

Wave fronts of solutions of some classes of non-linear partial differential equations

P. Popivanov (1992)

Banach Center Publications

1. This paper is devoted to the study of wave fronts of solutions of first order symmetric systems of non-linear partial differential equations. A short communication was published in [4]. The microlocal point of view enables us to obtain more precise information concerning the smoothness of solutions of symmetric hyperbolic systems. Our main result is a generalization to the non-linear case of Theorem 1.1 of Ivriĭ [3]. The machinery of paradifferential operators introduced by Bony [1] together...

Currently displaying 81 – 100 of 110