The kinetic transport equation in the case of Compton scattering.
In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in -space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199.
This work studies conditions that insure the existence of weak boundary values for solutions of a complex, planar, smooth vector field . Applications to the F. and M. Riesz property for vector fields are discussed.
We prove the uniqueness of weak solutions for the Cauchy problem for a class of transport equations whose velocities are partially with bounded variation. Our result deals with the initial value problem where is the vector fieldwith a boundedness condition on the divergence of each vector field . This model was studied in the paper [LL] with a regularity assumption replacing our hypothesis. This settles partly a question raised in the paper [Am]. We examine the details of the argument of...
We construct travelling wave graphs of the form , , , solutions to the -dimensional forced mean curvature motion () with prescribed asymptotics. For any -homogeneous function , viscosity solution to the eikonal equation , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by . We also describe in terms of a probability measure on .