Über den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flächen
The aim of the paper is to give a method to solve boundary value problems associated to the Helmholtz equation and to the operator of elasticity. We transform these problems in problems on the boundary Gamma of an open set of R3. After introducing a symplectic form on H1,2(G) x H-1,2(G) we obtain the adjoint of the boundary operator employed. Then the boundary problem has a solution if and only if the boundary conditions are orthogonal, for this bilinear form, to the elements of the kernel, in a...
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...