-boundedness of oscillating spectral multipliers on Riemannian manifolds
We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with -bounded geometry and nonnegative Ricci curvature.
We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with -bounded geometry and nonnegative Ricci curvature.
We prove an inequality of the typeThis is then used to derive the unique continuation property for the differential inequality under suitable local integrability assumptions on the function .
We deal with the Laplace equation in the half space. The use of a special family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet problem.
We investigate Laplace type operators in the Euclidean space. We give a purely algebraic proof of the theorem on existence and uniqueness (in the space of polynomial forms) of the Dirichlet boundary problem for a Laplace type operator and give a method of determining the exact solution to that problem. Moreover, we give a decomposition of the kernel of a Laplace type operator into -irreducible subspaces.
We show that the apparatus of support functions, usually used in convex surfaces theory, leads to the linear equation Δh + 2h = 0 describing locally germs of minimal surfaces. Here Δ is the Laplace-Beltrami operator on the standard two-dimensional sphere. It explains the existence of the sum operator of minimal surfaces, introduced recently. In 4-dimensional space the equation Δ h + 2h = 0 becomes inequality wherever the Gauss curvature of a minimal hypersurface is nonzero.
Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin...